In What Situation that an Induction Motor can be Accidentally Become a Generator?

The induction motor can contribute current to the faulted location during short circuit condition. Especially for a large induction motor, electrical designers should never neglect its contribution in sizing the exact rating of the protective device. It represents a small but important value that is needed to determine the maximum short circuit current available and thereby establishing the short circuit rating of electrical equipment. Regardless of the size or voltage rating of a motor, it can be demonstrated that motor contribution is present during a fault. 

During Normal Operation

During normal operation, a motor converts electrical energy into mechanical energy. Current flowing in the stator produces a rotating magnetic field with the poles facing toward the rotor. This rotating magnetic field induces a current into the rotor. A magnetic field with the poles facing out is produced in the rotor due to the stator induced current. This causes the rotor (motor shaft) to rotate. As long as the stator is supplied to a stable voltage supply, the motor shaft will continue to rotate. 

During Short Circuit Condition

During a short circuit condition, the system voltage will decay. A stable voltage supply no longer exists. The rotating magnetic field in the rotor will attempt to support the reduced voltage condition by becoming a power source.
At this moment the induction motor will behave as a generator and will contribute current to the fault location (see fault point 4).

Motor Contribution to Faulted System

The amount of current that the induction motor can contribute is equivalent to its locked rotor current which is 400% to 600% of motor FLA. (ANSI standard C37.010 [1]).

No comments:

Select Topics

electric protection Electrical Design power system protection Electrical Safety Fault Analysis Electrical Machines protective relaying circuit breaker electrical protection Electrical Equipment Technical Topics Electrical Installation Power System BS7671 short circuit analysis DC Circuit Earthing System Transformer power system analysis what Direct Current System Energy Efficiency Generator IEC standard Manual Resources Transmission Lines Unbalanced Fault Analysis electrical motor electrical testing grid automation power system automation smart grid tutorial video ebook how motor control substation automation symmetrical components AC Machines Advance Circuit Theory IEC 60364 Renewable Energy Voltage Drop Calculation current transformer electrical grounding schneider electric Circuit Analysis fuse generator protection power system stability quiz switchboard transformer protection ABB Manuals AC Circuit Busbar DC Machines GE Whitepapers General Electric Line to Line Fault National Electrical Code arc flash earth fault loop impedance electric vehicle electrical wiring power plant power system operation selective coordination switchgear video tutorial 3D printing ABB AREVA AUS/NZ 3000 Assignment help Busway Current Nomenclatures Electricity Spot Market G3 technology IEEE C37.2 IEEE/ANSI Device Numbers MiCom NFPA 70E Philippine Electrical Code Terms of use Theoretical UFES VFD ampacity battery building wiring capacitor circuit breaker curve cooling system cooper bussman disruptive technologies electrical earthing electrical harmonics energy industry energy savings engineering education iec 61850 inspection checklist learning process bus protective bonding single line to ground fault transmission line protection variable frequency drive voltage compensation voltage transformer voltage unbalance